Regioselective reactions of isothiocyanates with the titanocene vinylidene fragment [$\left.\mathrm{Ti}\left(=\mathrm{C}=\mathrm{CH}_{2}\right)\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2}\right]$. C rystal and molecular structure of [Ti\{SC(=NC $\left.\left.\left.\mathbf{H}_{11}\right) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e} \mathrm{e}_{5}\right)_{2}\right] \dagger$

R üdiger Beckhaus,*, ${ }^{\text {a }}$ J avier Sang, ${ }^{\text {a }}$ Trixie W agner ${ }^{\text {a }}$ and U we B öhme ${ }^{\text {b }}$
${ }^{\text {a }}$ D epartment of Inorganic C hemistry, Technical U niversity A achen, P rofessor-P irlet-Strasse 1, D-52062 A achen, Germany
${ }^{\text {b }}$ D epartment of Inorganic Chemistry, Leipziger Strasse, Technical U niversity Bergakademie F reiberg, D-09596 F reiberg, Germany

The titanocene vinylidene intermediate $\left[\mathrm{Ti}\left(=\mathrm{C}=\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{M} e_{5}\right)_{2}\right] \mathbf{1}$ formed by ethane or methane elimination from $\left[\uparrow i\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{Me} \mathrm{e}_{5}\right)_{2}\right] 2$ or $\left[\mathrm{Ti}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{Me}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2}\right] 3$ respectively, reacted with isothiocyanates RNCS ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11} \mathbf{a}, \mathrm{Ph} \boldsymbol{b}$ or Bu ${ }^{\mathbf{t}} \mathbf{c}$) by a $[2+2]$ cycloaddition, to give the titanathietane complexes $\left.\llbracket \overparen{T}\left\{S C(=N R) C=\mathrm{CH}_{2}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2}\right]$. The crystal structure of the $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}$ complex has been determined. In all cases the regioisomer in which the sulfur atom is bonded to titanium is observed as the primary product. U pon heating in the presence of pyridine a rearrangement to the regioisomeric titanacyclobutane derivative
$\left[T i\left\{C(=N R) S C=C H_{2}\right\}\left(\eta-C_{5} M_{5}\right)_{2}\right]$ was observed. The regioselectivity of the formation of the complexes $\mathbf{5}$ and 7 is discussed on the basis of ab initio calculations at the H artree-Fock level of theory, with an effective core potential basis set.

Recent interest in ambidentate ligands, especially the thiocyanate ion which can co-ordinate via the sulfur or the nitrogen atoms or both, probably results from two principal considerations. The ambidentate nature of SCN - may be interpreted in terms of sulfur being a 'soft' and nitrogen a 'hard' base. When it is the only ligand present in a complex its mode of bonding generally follows the hard ($\mathrm{M}-\mathrm{NCS}$) or soft ($\mathrm{M}-\mathrm{SCN}$) pattern throughout the Periodic Table. However, the nature of other ligands in a complex may determine whether the metal functions as a hard ion and forms isothiocyanato complexes, or as a soft ion and forms thiocyanato complexes. Steric factors in bulky ligands also may alter the nature of thiocyanate coordination. ${ }^{1}$ In the case of electron-poor transition metals the N -bonding mode of the thiocyanate ion is dominant, ${ }^{2}$ but also examples of S -bonding modes are known. ${ }^{2 \mathrm{~b}} \mathrm{~A}$ dditionally to the ambivalent character in different end-on co-ordination modes of the SCN ${ }^{-}$ion, side-on co-ordinations are known for isothiocyanates RSCN. ${ }^{3}$ The ambivalent behaviour can also be observed in [$2+2$] cycloaddition reactions of isothiocyanates and metal-ligand double bonds. Thus $\mathrm{C}=\mathrm{N}^{4}$ and $\mathrm{C}=\mathrm{S}$ addition products ${ }^{4 c, 5 a-c}$ are found.

The large variety of reactions involving the titanocene vinylidene intermediate $\left[\mathrm{Ti}\left(=\mathrm{C}=\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right] 1^{6}$ and carbon dioxide, ketenes, isocyanates, ${ }^{7}$ transition-metal carbonyls, ${ }^{8}$ nitriles and phosphaalkynes, ${ }^{9}$ alkynes ${ }^{100, b}$ and carbodiimides ${ }^{11}$ leads to four-membered titanacycles 4 of high thermal stability (Scheme 1). The regioselectivity can be explained in accordance with the polarities of the unsaturated compounds used in the cycloadditions towards the polarized titanium-carbon double bond $\left(\mathrm{Ti}^{\delta+}=\mathrm{C}^{\delta-}\right)$ of 1 . L arge differences in the partial charge of the unsaturated substrates (e.g. isocyanates, nitriles, alkynes) lead to stereochemically pure compounds, the more negative carbon being bonded to titanium. ${ }^{7,9,10 a, b}$ Regioisomers are obtained by using substrates with small differences in their partial charges. In a series of such studies we were interested in the behaviour of isothiocyanates RNCS towards the vinylidene intermediate $\mathbf{1}$, in order to determine the accessibility of titanathietanes 5 . Owing to lower differences in the polarity of the

[^0]

Scheme 1
NCS unit in isothiocyanates, compared to isocyanates, the formation of the regioisomers 6 and $\mathbf{7}$ should also be possible.

Results and Discussion

The vinylmethyl derivative $\mathbf{3}$ reacts with 1 equivalent of isothiocyanates $\mathrm{RNCS}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11} \mathbf{a}, \mathrm{Ph} \mathbf{b}\right.$ or $\left.\mathrm{Bu}^{\mathrm{t}} \mathbf{c}\right)$ at room temperature by liberation of methane to give the metallacyclobutanes 5a-5c (Scheme 2) which can be isolated as brown crystals of high thermal stability [m.p. 110 (decomp.) 5a, 139-140 (decomp.) 5b and $129^{\circ} \mathrm{C}$ (decomp.) 5c]. The products 5a and 5b with the sulfur atom in the α position are formed exclusively. When using Bu ${ }^{\text {t }} \mathrm{N} C S$ the reaction product contains 5 c and the regioisomer $\mathbf{7 c}$ in a 10:1 ratio. Isomers of $\mathbf{5}$, indicating [2 + 2] cycloadditions involving the $\mathrm{C}=\mathrm{N}$ bond (forming 6), are not found during the synthesis. The mass spectra of 5 exhibit the expected molecular peaks and the formation of a $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}{ }_{2}$ $\mathrm{Ti}=\mathrm{S}$ fragment in a first step, similar to the fragmentation behaviour of the titanaoxetanes $\mathbf{4 b}$, where a $\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2} \mathrm{Ti}=0$ fragment is also observed.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R data for the titanathietanes 5 are listed

Table 1 NMRD ata for the titanathietanes 5 ${ }^{\text {a }}$

		${ }^{1} \mathrm{H}(\mathrm{J} \boldsymbol{\text { нн }} / \mathrm{Hz}$)				${ }^{13} \mathrm{C}$			
	R	$\mathrm{C}_{5} \mathrm{Me}_{5}$	H^{1} (endo)	H^{2} (exo)	$\Delta^{\text {b }}$	$\mathrm{C}_{5} \mathrm{Me}_{5}$	C^{1}	C^{2}	C^{3}
5a	$\mathrm{C}_{6} \mathrm{H}_{11}$	1.69	$\begin{aligned} & 3.91 \\ & (\mathrm{~d}, 2.8) \end{aligned}$	$\begin{aligned} & 6.92 \\ & (d, 2.8) \end{aligned}$	3.01	$\begin{array}{r} 12.4 \\ 124.6 \end{array}$	110.1	196.0	149.7
5b	Ph	1.64	$\begin{aligned} & 4.06 \\ & (\mathrm{~d}, 2.4) \end{aligned}$	$\begin{aligned} & 7.06 \\ & (\mathrm{~d}, 2.4) \end{aligned}$	3.00	$\begin{array}{r} 12.4 \\ 125.0 \end{array}$	112.2	195.9	153.4
5c	$B u^{t}$	1.68	$\begin{aligned} & 3.74 \\ & (d, 2.8) \end{aligned}$	$\begin{aligned} & 6.97 \\ & (d, 2.8) \end{aligned}$	3.23	$\begin{array}{r} 12.7 \\ 124.9 \end{array}$	109.5	195.7	149.0

${ }^{\text {a }}$ L isted in ppm vs. $S i M \mathrm{e}_{4}$; solvent was $\mathrm{C}_{6} \mathrm{D}_{6}$ and temperature $=25^{\circ} \mathrm{C} .{ }^{\mathrm{b}} \Delta=\left|\delta\left(\mathrm{H}^{2}\right)-\delta\left(\mathrm{H}^{1}\right)\right|$.

Table 2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in complex 5 a compared to those of similar structure types

				α Ti		
	$\begin{aligned} & 5 \mathbf{a}(X=S) \\ & \mathbf{4 b}(X=O) \end{aligned}$	$\begin{aligned} & 8(X=S) \\ & 9\left(X=S i e_{2}\right) \end{aligned}$	10		12	
Complex	a	b	C	d	e	R ef.
5a	2.466(1)	2.156(3)	$1.484(5)$	1.795(3)	1.320(4)	This work
4b	1.983(2)	$2.121(3)$	1.477(4)	1.348(3)	1.325(4)	7(a)
8	2.413(4)	2.413(4)	2.041(5)	2.041(5)	(3)	13(a)
9	2.454(1)	2.454(1)	2.110(1)	2.110(1)	-	13(b)
10	2.418(3)	2.389(3)	1.76(1)	1.76(1)	-	13(c)
11	2.422(1)	2.448(1)	2.059(2)	2.058(1)	-	13(d)
12	2.409(2)	2.418(3)	-	-	14	
	α	β	γ	δ	R ef.	
5a	70.45(9)	99.5(2)	109.2(2)	80.9(1)	This work	
4b	67.6(1)	87.2(2)	107.9(2)	96.7(2)	7(a)	
8	84.44(9)	76.34	105.3(1)	76.34	13(a)	
9	87.1	83.4	105.5	83.4	13(b)	
10	81.4(1)	97.4(4)	-	95.9(4)	13(c)	
11	94.6	-	-	-	13(d)	
12	94.8(1)	-	-	-	14	

7
in Table 1. Especially the value of the difference Δ of the chemical shifts of H^{1} and H^{2} in $5 \mathrm{a}-5 \mathrm{c}$ appears to be a characteristic feature of the new complexes. The low-field signals in the ${ }^{13} \mathrm{C}$ NM R spectra are consistent with the metal-bonded C^{2} atom (δ 195.7-196.0), whereas the chemical shifts of C^{1} and C^{3} are in the expected range.
The structure of compound $\mathbf{5 a}$ was confirmed by X-ray analysis. The ORTEP ${ }^{12}$ plot is shown in Fig. 1, relevant bond distances and angles, compared to those of similar structure

Scheme 2
types, in Table 2. The crystal chemistry of this and related titanacyclobutanes ($4 \mathbf{b}^{7 a} \mathbf{~} \mathbf{4 d}, 4 \mathbf{e}^{9}$) will be the subject of a forthcoming paper. ${ }^{7 \mathrm{7}}$ The geometry of 5 a shows a planar titanacycle. Thietanes are characterized by an angle of $154(4)^{\circ}$ between the CCC and the CSC planes. ${ }^{15}$ The solid-state structural data for 5 a are consistent with a metallacycle formalism. The $\mathrm{Ti}-\mathrm{C}(2)$ bond is longer as in the titanacyclobutane $2[2.068(6) \AA]^{6 c}$ and also longer than in titanacyclobutenes [$4 \mathrm{f}(\mathrm{R}=\mathrm{Me}), 2.104(3)$ \AA]. ${ }^{10 \mathrm{a}} \mathrm{M}$ ore interesting is the slight elongation of the Ti-S bond compared to those of other sulfur-containing metallacycles $8-10^{13}$ and particularly to the non-cyclic titanocene sulfide $\left[\mathrm{Ti}(\mathrm{SH})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right] \quad 12 .{ }^{14} \mathrm{G}$ enerally, the small ring size of

Fig. 1 An ORTEP drawing of $\left[T i\left\{\mathrm{SC}\left(=\mathrm{NC}_{6} \mathrm{H}_{11}\right) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right)_{2}\right]$ 5a (30\% ellipsoids)

heterotitanacyclobutanes $\overparen{T-X-C C}(X=O, N$ or S) leads to longer $\mathrm{Ti}-\mathrm{X}$ distances as in larger rings or non-cyclic compounds, dueto the lowering of $X \rightarrow T i \pi$-bonding interactions as a result of smaller $\mathrm{Ti}-\mathrm{X}-\mathrm{C}$ angles in four-membered rings. Thus the $\mathrm{Ti}-\mathrm{S}$ bond distances increase from 12 [2.409(2)] to the fivemembered rings $\mathbf{1 1}$ and $\mathbf{1 0}$ [2.422(1), 2.418(3)] and to the fourmembered rings 8, 9 and 5 a $[2.413(4), 2.454(1)$ and $2.466(1)]$.

The exocyclic $C=C$ double bond $C(1)-C(2)[1.320(4) \AA$] is relatively short, compared to those in $4 f\left[1.377(4) \AA, R=M e^{10 a}\right.$ 1.342(5) $\AA, R=C C S i M e_{3}$ or $\mathrm{SiMe}_{3}{ }^{10 \mathrm{~b}}$, but similar to 4 d $[1.337(3)], 4 \mathrm{e}[1.326(8)]^{9}$ and $4 \mathrm{f}\left[1.322(8), \mathrm{R}=\mathrm{SiM} \mathrm{e}_{3}\right.$ or Ph$]{ }^{10 \mathrm{a}}{ }^{10}$ The value of the distance e is indicative of the reactivity of the methylenetitanacycles. A long distance characterizes stable complexes, a shorter distance points to a tendency to cycloreversion reactions (forming 1), as found for $2(e=1.321 \AA)$, ${ }^{6 c} 4$ e and $\mathbf{4 f}$. A dditionally the $\mathrm{C}(2)-\mathrm{C}(3)$ bond in $\mathbf{5 a}$ is longer than in 4b. A s a consequence of the larger sulfur atom in $\mathbf{5 a}$ compared to the oxygen in the oxetanes $\mathbf{4 b}$, a longer distance $\mathrm{Ti} \cdots \mathrm{C}(3)$ of $2.881(3)$ in 5 a compared to $2.52 \AA$ in $\mathbf{4 b}$ is found. The value of the angle α in 5 a (Table 2) is in the expected range for fourmembered titanacycles ${ }^{6 a}$ exhibiting a lower value compared to the more sulfur-rich compounds 8 and 9 and especially to larger rings or non-cyclic titanocene derivatives like $\mathbf{1 1}$ and 12, as discussed before.

The orientation of the substituents in the cyclobutanes can be attributed to the polarity of the isothiocyanate molecule and the strongly nucleophilic $\alpha-\mathrm{C}$ atom in the vinylidene $1\left(\mathrm{Ti}^{8+}=\right.$ $\mathrm{C}^{\delta-}=\mathrm{CH}_{2}$). However, the nitrogen atom in R NCS exhibits the most negative partial charge (Pauling electronegativity values: $\mathrm{S}, 2.5 ; \mathrm{C}, 2.5 ; \mathrm{N}, 3.0$) and a N -co-ordination mode \mathbf{A} is expected. Calculated electron densities for the optimized structure of M eNCS (M ulliken values, basis set 6 -31G*) confirmed that the most negative charge was on the nitrogen atom (S , $-0.21 ; C,+0.31 ; N,-0.45)$. On the other hand, the primary coordination mode A exhibits a larger space requirement (α) compared to the S-co-ordination mode B. In particular, the rod-like shape of isothiocyanate molecule R N CS seems to be the reason for a preferred S -end-on co-ordination mode and formation of the CS-cycloaddition products 5 instead of a CN cycloaddition to the regioisomer 6. Furthermore, isothiocyanates normally undergo nucleophilic attack at the carbon

atom and not, like many other carbon-sulfur double bondcontaining molecules, thiophilic attack. ${ }^{16}$

H eating compound $\mathbf{5 a}$ in the presence of pyridine at $80^{\circ} \mathrm{C}$ for 20 min results in isomerization to 7 (85\%). The pyridine is not incorporated in the reaction product, but without it no isomerization takes place. A s mentioned before, the reaction of 1 with $B u^{t} N C S$ leads to a small amount of $7 \mathrm{c}(5 \mathrm{c}: 7 \mathbf{c}=10: 1)$, which cannot be separated. Owing to the relatively long Ti-S and the $\mathrm{C}(2)-\mathrm{C}(3)$ bond distances in 5 a , a reactive $\mathrm{Ti}-\mathrm{S}$ bond is expected, indicating the possibility of a cycloreversion of 5. Thus the formation of ring-opened intermediates 13 and 14 seems to be possible, which can rearrange to the second CScycloaddition product 7. During the isomerization the colour changes from brown to light yellow. The N M R spectra clearly indicate the four-membered ring structure of 7 , which can be seen from the exo- CH_{2} group at $\delta 4.19$ and 7.91 for 7 a. In the ${ }^{13} \mathrm{C}$ NMR spectrum a second titanium-bonded carbon atom can be observed ($\delta 204.5,7 \mathrm{a}$), instead of the signal $\delta 149.7$ for the $\beta-\mathrm{C}=\mathrm{N}$ carbon atom in 5 a .
To understand the reaction course $\mathbf{5} \longrightarrow \mathbf{7}$, the geometries of thetitanium complexes $\mathbf{1 5}, 16$ and $17 / 18$ were investigated by ab initio calculations at the restricted H artree-Fock (R H F) level of theory (see Experimental section). In our ab initio calculations the $\mathrm{C}_{5} \mathrm{M}_{5}$ groups of the real molecules 5 and 7 were replaced by chloride ligands, which has been shown in other studies to provide a good theoretical substitute for the actual bent metallocene system. ${ }^{17}$ The optimized geometries and the atomic charge distributions and bond-overlap populations of 15, 16 and 18 a are shown in Figs. 2 and 3 . The geometry of 16 is in good agreement with the structure found for 5a. The total energies of theoptimized structures 15,16 and 18a are shown in Table 3. The calculation of single-point energies by secondorder M øller-Plesset perturbation (M P2) results in a lowering of the total energy of these systems. This stabilization effect is similar for 16 and 18a. The smaller molecule $\mathbf{1 5}$ shows a smaller effect, as expected.

Table 3 Total energies (E) and energy differences of complexes 15, $\mathbf{1 6}$ and $\mathbf{1 8 a}\left[\mathrm{E}_{\mathrm{h}} ; \mathrm{kJ} \mathrm{mol}^{\mathbf{- 1}}\right.$ (in parentheses)]

	15	16	18a	$E(16)-E(18 \mathrm{a})$
$E^{\text {RHF }}$	-115.582 53	-131.259 45	-131.28475	$\begin{aligned} & 0.0253 \\ & (66.4) \end{aligned}$
$E^{\text {MP2/R HF }}$	-116.071 11	-131.921 67	-131.938 37	$\begin{aligned} & 0.0167 \\ & (43.8) \end{aligned}$
$E^{\mathbf{R H F}}-E^{\text {MP2/RHF }}$	-0.48858	-0.662 22	-0.653 62	

15

16

18a

Fig. 2 Optimized geometries of complexes 15, 16 and 18a at the R H F level; distances in \AA

Whereas structure $\mathbf{1 6}$ converged well during optimization, the starting geometry 17a led straightforwardly to the optimized structure 18a. The fully optimized geometry of 18a is more stable than $16\left(66.4 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$ at the restricted H artreeFock level, $43.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at the M P2 level). The geometries of the four-membered titanacycles $\mathbf{1 5}$ and $\mathbf{1 6}$ are similar. Replacement of the CH_{2} group in $\mathbf{1 5}$ by a $\mathrm{C}=\mathrm{N}$ M e group in $\mathbf{1 6}$ leads to elongation of the $\mathrm{Ti}-\mathrm{C}, \mathrm{Ti}-\mathrm{S}, \mathrm{Ti}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ (exomethylene group) bond lengths. The bond lengths S-C and C-C are shorter in 16 by 0.048 and $0.038 \AA$, respectively. This reflects the peculiar effect of the $\mathrm{C}=\mathrm{N} \mathrm{M}$ e group on the titanathietane ring in 16: on one hand there are longer bonds between titanium and its ligands, on the other shorter bonds between the $\mathrm{C}=\mathrm{NMe}$ group and its neighbours. The repulsive interaction

15

16

Fig. 3 A tomic charge distributions and bond-overlap populations of complexes 15, 16 and 18a obtained by M ulliken population analysis at the RHF level
(-0.362) between the α - and β-carbon in the four-membered ring is the most striking feature of the M ulliken-overlap population analysis of 16 (Fig .3). Therefore it becomes probable that the kinetic product 16 undergoes a ring-opening reaction at the internal $\mathrm{C}-\mathrm{C}$ bond with rearrangement to the thermodynamic stable product 18a. It was found in our experiments that 5a rearranges to 7 upon heating. The structure 18a represents a titanium thioketene complex with co-ordinated methyl isocyanide

Obviously the formation of complex 18a reflects the degradation of isothiocyanates to isocyanides typical of late-transition-metal SCN R complexes, ${ }^{3 a, 18, b}$ but also in the case of

17b
Fig. 4 Optimized geometry of complex 17b (RHF level, basis set STO-3G); distances in Å

19
Lewis-acid metallocenes $\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2}$. ${ }^{5 \mathrm{a}}$ The existence of $\eta^{2}-\mathrm{C}, \mathrm{S}$ bonded thioketene derivatives ${ }^{19}$ as calculated in 18a and comparable structures are also known in the case of titanium complexes. ${ }^{20} \mathrm{H}$ owever, in the case of theformation of $\mathbf{7}$ from 5 there are no hints regarding the presence of a co-ordinated isocyanide in the IR spectra [expected for $v(\mathrm{C}=\mathrm{N})$ in Ti-CN-R complexes with RNC as σ donors ($2200,{ }^{21} 2260-2310 \mathrm{~cm}^{-122}$) or as π-acceptor ligands (2038, $1937 \mathrm{~cm}^{-123}$)]. Only the typical $v(\mathrm{CN})$ band of an iminoacyl structure ${ }^{24}$ is observed in the case of $7 \mathrm{a}\left(1541 \mathrm{~cm}^{-1}\right)$, which is only consistent with the model structure $\mathbf{1 7}$ and $\mathbf{7}$ in the real molecules. The mass spectra of $\mathbf{7 a}$ shows the expected molecular peak.
Comparison of complex 18a with the titanocene thioformaldehyde complex $\left[\mathrm{Ti}\left(\eta^{2}-\mathrm{SCH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{PM} \mathrm{e}_{3}\right)\right] \mathbf{1 9}$, which was isolated and structurally characterized some years ago, ${ }^{200}$ shows that there are great similarities in the co-ordination geometry of the $\mathrm{C}-\mathrm{S}$ fragment at titanium. The $\mathrm{Ti}-\mathrm{S}$ and $\mathrm{C}-\mathrm{S}$ bond lengths exhibit only small differences of 0.056 and $0.039 \AA$, respectively. The bond length $\mathrm{Ti}-\mathrm{C}$ in the model complex 18a is shorter than in 19 by $0.244 \AA$. The angles $\mathrm{C}-\mathrm{Ti}-\mathrm{S}$ are similar with 46.8° in 18a and 43.3° in 19. The differences between 18a and 19 can be attributed to the different donor molecules CNM e and PM_{3} and to the substitution of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand by Cl atoms.

To gain a better insight into the influence of the spacer ligand chloride in comparison with any cyclopentadienyl system, we performed theoptimization of the cyclopentadienyl-substituted model complexes 17b and 18b with basis set STO-3G. \ddagger Wefound that the structure $\mathbf{1 7 b}$ is a minimum in this system for this primitive basis set (Fig. 4). Therefore we conclude that the chloride ligands with their higher electronegativity and different space filling than $\mathrm{C}_{5} \mathrm{H}_{5}$ are the reason for the unexpected minimum structure 18a in our $\mathrm{Cl}_{2} \mathrm{Ti}$ model system.

C onclusion

We have demonstrated that the reaction of the titanocene
vinylidene intermediate $\left[\mathrm{Ti}\left(=\mathrm{C}=\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{Me}\right)_{2}\right] \mathbf{1}$ with isothiocyanates yields titanathietane complexes 5 . Only one regioisomer is formed, where the sulfur atom is in the α position of the metallacycle The regioselectivity can be explained in terms of the shape of the isothiocyanate and the stereochemistry of 1 . On heating in the presence of pyridine, $\mathbf{5}$ can be isomerized to a second $\mathrm{C}=\mathrm{S}$ cycloaddition product 7. $\mathrm{C}=\mathrm{N}-\mathrm{Cycloaddition}$ products are not observed. The isomerization of $\mathbf{5}$ to $\mathbf{7}$ shows that the lower polarity of the C=S unit in the R NCS molecule allows the formation of a second isomer. In this context the behaviour of titanathietanes is quite different from that of titanaoxetanes, which react to give $\mathrm{i}=0$ (classical behaviour) or by cycloreversion to give $\mathrm{Ti}=\mathrm{C}$ bonds (non-classical behaviour). ${ }^{6 a, b, 8} \mathrm{~A}$ similar comparison of different reactivities between homologous compounds can be made between aza- and phospha-titanacyclobutenes. For the former only one regioisomer is observed; the latter exhibit also α, β regioisomers. ${ }^{9}$ This behaviour can also be attributed to the lower polarity of the $C=X$ bond used in cycloaddition reactions.

Experimental

G eneral considerations

The preparation and handling of the described compounds were performed under rigorous exclusion of air and moisture under a nitrogen atmosphere, using standard vacuum-line and Schlenk techniques. All solvents were dried with appropriate drying agents and distilled under a nitrogen atmosphere. Deuteriated solvents were degassed by freeze-pump-thaw cycles and dried over molecular sieves ($3,4 \AA$) prior to use. Proton and ${ }^{13}$ C NMR spectra were recorded on a Varian U nity 500 spectrometer. Chemical shifts are reported in ppm and referenced to residual protons in deuteriated solvents ($\mathrm{C}_{6} \mathrm{D}_{6}, \delta 7.15$ for ${ }^{1} \mathrm{H}$ NM R , $\delta 126.96$ for ${ }^{13} \mathrm{C}$ NMR). M ass spectra were recorded on a Finnigan M AT 95 mass spectrometer, infrared spectra as KBr pellets on a Perkin-Elmer 1720X FT-IR spectrometer. Elemental analyses were carried out at the A nalytische Laboratorien in Lindlar, Germany. The titanocene complexes $\left[\mathrm{Ti}\left(\mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{Me}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right)^{8,25}$ and $\left[T i\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5}{ }^{-}\right.\right.$ $\left.\mathrm{M} \mathrm{e}_{5}\right)_{2}{ }^{26 a, b}$ were prepared by literature procedures. The isothiocyanates were obtained from A ldrich.

Preparations

(4-C yclohexylimino)(3-methylene)-2,2-bis(η^{5}-pentamethyl-cyclopentadienyl)-1-thia-2-titanacyclobutane 5 a. To a solution of complex $3(366.0 \mathrm{mg}, 1.015 \mathrm{mmol})$ in hexane ($40 \mathrm{~cm}^{3}$) was added cyclohexyl isothiocyanate ($150.6 \mathrm{mg}, 1.066 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature and stirred overnight. The hexane was partially removed under reduced pressure until crystallization took place $\left(0^{\circ} \mathrm{C}\right)$, yielding 5a after decantation as brown, octahedral crystals (m.p. $110^{\circ} \mathrm{C}$), suitable for structure determination. Y ield 0.265 g , 54% (Found: C, 72.25; H, 9.2; N, 2.75; S, 6.35. $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{NSTi}$ requires C, 71.75; H, 8.95; N, 2.9; S, 6.6\%). NMR (C ${ }_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}$ (500 M Hz), $\delta 1.28-1.37$ ($1 \mathrm{H}, \mathrm{t} / \mathrm{m}, \mathrm{J} 3.5$), 1.51-1.58 ($2 \mathrm{H}, \mathrm{t} / \mathrm{m}, \mathrm{J}$ 3.5), 1.58-1.65 ($1 \mathrm{H}, \mathrm{m}$), 1.80-1.85 ($1 \mathrm{H}, \mathrm{m}$), 1.85-1.92 ($3 \mathrm{H}, \mathrm{m}$), $2.17(2 \mathrm{H}, \mathrm{m})$ (all CH C_{2} ring), $1.69\left[30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 3.91[1 \mathrm{H}$, d, J $2.8,=\mathrm{CHH}(\mathrm{cis})], 4.20(1 \mathrm{H}, \mathrm{t} / \mathrm{t}, \mathrm{J} 9.9 / 4.0, \mathrm{NCH})$ and 6.92 $\left[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8 \mathrm{~Hz},=\mathrm{CH} H\right.$ (trans)]; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{M} \mathrm{Hz}), \delta 12.4$ $\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right.$], 25.7, 26.8, 34.2 (all CH_{2} ring), 60.2 ($=\mathrm{NCH}$), 110.1 $\left(=\mathrm{CH}_{2}\right), 124.6\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 149.7(\mathrm{C}=\mathrm{N})$ and $196.0(\mathrm{Ti}-\mathrm{C}=)$. Electron impact (EI) mass spectrum ($111{ }^{\circ} \mathrm{C}$): m/z 485 (M, 28), 460 (40), $350\left[\left(\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2} \mathrm{Ti}=\mathrm{S}, 33\right], 318\left[\left(\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2} \mathrm{Ti}, 100\right], 279$ (10), 271 (30), 256 (17), 215 [(C. C_{5} e $)$ T i=S, 20], 181 (19), 159 (12), 136 ($\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5} \mathrm{H}, 39$), 119 (53), 105 (26), 91 (23), 83 (11), 77 (11) and 55 (18\%); exact mass $485.2596\left(\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{NSTi}\right)$, calculated 485.2596 . IR (K Br): 3076w, 3022w, 2985w, 2956m, 2927vs, 2848s, 2722w, 1630w, 1539vs [v(C=N)], 1491m, 1448m, 1379vs, 1343w, 1255w, 1180w, 1165w, 1120m, 1058w, 1019m, 1006m, 979m, 960m,

902m, 891w, 843w, 792w, 713m, 627w, 619w, 593w, 556m, 475w, $458 \mathrm{w}, 434 \mathrm{w}$ and $406 \mathrm{~m} \mathrm{~cm}{ }^{-1}$.
(3-M ethylene)-2,2-bis($\boldsymbol{\eta}^{5}$-pentamethylcyclopentadienyl)(4-phenylimino)-1-thia-2-titanacyclobutane 5b. A reaction of complex $3(271.2 \mathrm{mg}, 0.7525 \mathrm{mmol})$ in hexane ($30 \mathrm{~cm}^{3}$) with phenyl isothiocyanate ($106.8 \mathrm{mg}, 0.7901 \mathrm{mmol}$) was carried out using the same procedure as in the case of 5 a. Owing to the low solubility of $\mathbf{5 b}$ in hexane the reaction mixture was filtered, yielding 5b as brown microcrystals, m.p. 139-140 ${ }^{\circ} \mathrm{C}$ (decomp.), Y ield $0.310 \mathrm{~g}, 86 \%$ (Found: C, 71.0; H, 8.1; N, 2.7. $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NSTi}$ requires C, 72.65; H, 7.8; N, 2.9\%). NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{13} \mathrm{H}(500$ $\mathrm{MHz}), \delta 1.64\left[30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 4.06[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,=\mathrm{CHH}-$ (cis)], 7.01 ($1 \mathrm{H}, \mathrm{t} / \mathrm{m}, \mathrm{J} 7.2, \mathrm{p}-\mathrm{H}$), 7.06 [1 H, d, J 2.4, $=\mathrm{CHH}$ (trans) $], 7.37(1 \mathrm{H}, \mathrm{t} / \mathrm{m}, \mathrm{J} 8.0, \mathrm{~m}-\mathrm{H})$ and $7.50(2 \mathrm{H}, \mathrm{d} / \mathrm{m}, \mathrm{J}$ $8.5 \mathrm{~Hz}, 0-\mathrm{H}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{M} \mathrm{Hz}), \delta 12.4\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 112.2$ $\left(=\mathrm{CH}_{2}\right), 122.7(\mathrm{~m}-\mathrm{C}), 125.0\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 128.3(\mathrm{p}-\mathrm{C}), 129.8(\mathrm{o}-\mathrm{C})$, 153.4 ($\mathrm{C}=\mathrm{N}$), 156.8 (ipso-C) and 195.9 ($\mathrm{Ti}-\mathrm{C}=$). El mass spectrum ($151{ }^{\circ} \mathrm{C}$): m/z 479 (M , 19), 445 (3), 389 (3), 380 (13), 353 (23), $350\left[\left(\mathrm{C}_{5} \mathrm{M}_{5}\right)_{2} \mathrm{Ti}=\mathrm{S}, 9\right], 345$ (9), 318 (23), 317 (26), 297 (13), 279 (14), 265 (100), 250 (63), 235 (16), 218 (60), 194 (6), 167 (21), 162 (36), 147 (51), 134 (68), $130(57), 121$ (47), 119 (92), 105 (43), 93 (30), 91 (36), 77 (48) and 57 (35\%); exact mass $479.2128\left(\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N} \mathrm{STi}\right)$, calculated 479.2126 . IR (K Br): 3074 w , 3060w, 3029w, 2959m, 2905s, 1819w, 1593s, 1530vs [v(C=N)], $1485 \mathrm{~m}, 1431 \mathrm{~m}, ~ 1378 \mathrm{vs}, 1262 \mathrm{~s}$, 1222s, 1165w, 1103m, 1069w, $1021 \mathrm{~m}, ~ 1002 \mathrm{w}, ~ 991 \mathrm{~m}, ~ 908 \mathrm{~s}, 846 \mathrm{~m}, 803 \mathrm{~s}, 765 \mathrm{~s}, 695 \mathrm{vs}, 622 \mathrm{w}$, $608 \mathrm{~m}, 548 \mathrm{~m}, 500 \mathrm{w}$ and $420 \mathrm{~m} \mathrm{~cm}^{-1}$.
(4-tert-B utylimino)(3-methylene)-2,2-bis($\boldsymbol{\eta}^{5}$-pentamethyl-cyclopentadienyl)-1-thia-2-titanacyclobutane 5c. A reaction of complex 3 ($205.1 \mathrm{mg}, 0.5691 \mathrm{mmol}$) in hexane ($20 \mathrm{~cm}^{3}$) with tert-butyl isothiocyanate ($68.8 \mathrm{mg}, 0.598 \mathrm{mmol}$) was carried out using the same procedure as in the case for $\mathbf{5 a}$. Similar work-up gave 5 c as yellow-brown needles, m.p. $129^{\circ} \mathrm{C}$ (decomp.). Y ield $0.191 \mathrm{~g}, 73 \%$ (Found: C, 69.6; H, 9.55; N, 2.85. C ${ }_{27} \mathrm{H}_{41} \mathrm{NSTi}$ requires C, $70.55 ; \mathrm{H}, 9.0 ; \mathrm{N}, 3.05 \%)$. N M R ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}(500$ $\mathrm{MHz}), \delta 1.68\left[30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 1.82\left[9 \mathrm{H}, \mathrm{s}, \mathrm{N} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.74$ $[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,=\mathrm{CHH}(\mathrm{cis})]$ and $6.97[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8 \mathrm{~Hz}$, $=\mathrm{CHH}($ trans $)] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}), \delta 12.7\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right.$], 29.8
 $149.0(\mathrm{C}=\mathrm{N})$ and $195.7(\mathrm{Ti}-\mathrm{C}=)$. El mass spectrum ($91^{\circ} \mathrm{C}$): m/z 459 ($\mathrm{M}, 8$), 402 (4), 356 (13), $350\left[\left(\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2} \mathrm{Ti}=S, 19\right], 337$ (22), 318 (76), 317 (76), 279 (8), 277 (9), 268 (12), 221 (29), 202 (24) 149 (27), 143 (100), 135 (72), 121 (47), 119 (91), 105 (35), 91 (30), 88 (27), 87 (30), 71 (33) and 57 (47\%); exact mass 459.2441 ($\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{NSTi}$), calculated 459.2439. IR (K Br): 3040w, 2962vs, 2901vs, 1808w, 1556vs [v(C=N)], 1490m, 1475w, 1452m, 1432m, $1379 \mathrm{vs}, 1351 \mathrm{~s}, 1262 \mathrm{w}, 1227 \mathrm{~s}$, 1209s, 1109s, 1065w, 1020s, 962 s , 915w, 901s, 803m, 772w, 711w, 651w, 595w, 556m, 539m, 505w and $470 \mathrm{w} \mathrm{cm}{ }^{-1}$.
(2-C yclohexylimino)(4-methylene)-3,3-bis(η^{5}-pentamethyl-cyclopentadienyl)-1-thia-3-titanacyclobutane 7a. Complex 5a ($140 \mathrm{mg}, 0.288 \mathrm{mmol}$) was dissolved in pyridine ($30 \mathrm{~cm}^{3}$) (dried over KOH and distilled before use) and heated to $80^{\circ} \mathrm{C}$ for 15 min . During that time the mixture changed from brown-red to vivid yellow. The pyridine was partially removed under reduced pressure until crystallization took place, yielding 7a as a yellow powder. Y ield 85\% according to NMR spectroscopy. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) : ${ }^{1} \mathrm{H}(500 \mathrm{M} \mathrm{Hz}), \delta 1.01-1.11(1 \mathrm{H}, \mathrm{m}), 1.13-1.22(1 \mathrm{H}, \mathrm{m})$, 1.25-1.35 (1 H, m), 1.45-1.51 (3 H, m), $2.24(4 \mathrm{H}, \mathrm{m})\left(\right.$ all CH ${ }_{2}$ ring), $1.67\left[30 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 4.19[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.0,=\mathrm{CHH}(\mathrm{cis})]$, $4.86(1 \mathrm{H}, \mathrm{t} / \mathrm{t}, \mathrm{J} 7.5 / 4.0, \mathrm{NCH})$ and $7.91[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 30 \mathrm{~Hz}$, $=\mathrm{CHH}$ (trans)]; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(125 \mathrm{MHz}), \delta 12.2\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 25.4$, 26.1, 32.4 (all CH_{2} ring), $54.3\left(=\mathrm{NCH}\right.$), $121.1\left(=\mathrm{CH}_{2}\right), 122.6$ $\left[\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right], 198.5(\mathrm{Ti}-\mathrm{C}=)$ and $204.5(\mathrm{C}=\mathrm{N})$. El mass spectrum $\left(111{ }^{\circ} \mathrm{C}\right): \mathrm{m} / \mathrm{z} 486(\mathrm{M}+\mathrm{H}, 2), 414(5), 351(5), 317\left[\left(\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2}{ }_{2}\right.$ Ti-H, 11], 305 (10), 272 (21), 170 (24), $136\left(\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5} \mathrm{H}, 100\right.$), 121 (64), 119 (31), 105 (27), 98 (17), 93 (11), 91 (15), 88 (14), 71 (13)

Table 4 Crystal data and parameters of structure refinement for complex 5a

Formula M	$\begin{aligned} & \mathrm{C}_{2 \mathrm{H}} \mathrm{H}_{43} \mathrm{NSTi} \\ & 485.64 \end{aligned}$
Space group (no.)	$\mathrm{P}_{2} / \mathrm{n}$ (14)
Crystal symmetry	M onoclinic
	10.559(1)
b/A	13.252(1)
c/Å	18.903(3)
$\gamma{ }^{\circ}$	90.60(1)
U / \AA^{3}	2644.9(9)
Z	4
D $/ \mathrm{g} \mathrm{cm}^{-3}$	1.219
μ / cm^{-1}	35.78
T/ ${ }^{\circ} \mathrm{C}$	20
Radiation (λ / \AA)	Cu-K a (1.5418)
Crystal dimensions/mm	$0.7 \times 0.5 \times 0.4$
M easured reflections	4931
Scan range/ ${ }^{\circ}$	$5 \leqslant \theta \leqslant 65$
U nique observed reflections $[1>1.0 \sigma(1)]$	3247
Parameters refined	289
R	0.054
R'*	0.064
G oodness of fit	1.500
g scheme $\mathrm{w}^{-1}=\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)$.	

and 55 (11\%); exact mass $485.2596\left(\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{NSTi}\right)$, calculated 485.2596. IR (K Br): 3640s, 2978w, 2925vs, 2847s, 1541s [$\mathrm{v}(\mathrm{C}=\mathrm{N}$)], 1494m, 1449s, 1381vs, 1344m, 1261w, 1247w, 1192w, $1166 \mathrm{~m}, 1132 \mathrm{w}, 1099 \mathrm{w}, 1065 \mathrm{w}, 1020 \mathrm{w}, 1002 \mathrm{vs}, 971 \mathrm{~m}, 929 \mathrm{~m}$, $891 \mathrm{~m}, 799 \mathrm{~s}, 717 \mathrm{~s}, 697 \mathrm{~s}, 626 \mathrm{w}, 597 \mathrm{w}, 557 \mathrm{~s}, 478 \mathrm{~m}$ and $428 \mathrm{~m} \mathrm{~cm}^{-1}$.

Ab initio and modelling calculations

The geometry of M eN CS was fully optimized at the restricted H artree-Fock level of theory with the 6-31G* standard basis set, ${ }^{28, \mathrm{~b}}$ those of complexes $\mathbf{1 7 b}$ and $\mathbf{1 8 b}$ with basis set STO3G ${ }^{28}$ and titanium complexes 15, 16 and 18a with an effective core potential (ECP) basis set. ${ }^{29, b}$ The ECP replaces the innermost core orbitals for titanium and all core orbitals for the main-group elements ($\mathrm{C}, \mathrm{N}, \mathrm{S}, \mathrm{CI}$). For titanium, orbitals $3 \mathrm{~s}, 3 \mathrm{p}$, $3 d, 4 s$ and $4 p$ weretreated explicitly by a double- ζ quality $s p$ and a quadruple- ζ quality d basis set. For the main-group elements, ns and np were treated explicitly by a double- ζ basis set. It has been shown that this ECP basis set is suitable for transitionmetal compounds of various kinds. ${ }^{30 \mathrm{a}-\mathrm{c}}$
Although geometries are predicted accurately at the RHF level, energetics are expected to be poor if correlation energy is ignored. The correlation contribution was taken into consideration with single-point energy calculations (at the geometries obtained at the R HF level) according to M øller-Plesset secondorder perturbation theory (M P2/R HF). ${ }^{31}$ The atomic charges have been calculated from the fully optimized structures by Mulliken population analysis. The calculations have been carried out using the program packages SPA RTAN 3.1^{32} on an IBM RS6000-355 and GAMESS ${ }^{33}$ on a CONVEX-C3420 computer.

C rystallography

Geometry and intensity data were collected on an EnrafNonius CAD4 diffractometer equipped with a graphite monochromator. A summary of crystallographic data, data collection and refinement parameters is given in Table 4. The monoclinic setting with a unique c axis was chosen for easier comparison between the structure of complex $\mathbf{5 a}$ and the related but not isotypic structure of $\mathbf{4 b}\left(R=\mathrm{C}_{6} \mathrm{H}_{11}\right)^{\text {7a }}$ which has similar unit-cell dimensions $[a=9.904(3), b=13.780(3)$, $\left.C=19.342(4) \AA, \beta=95.07(2)^{\circ}, U=2629(2) \AA^{3}\right]$. In both structures pairs of molecules are arranged in layers; they differ, however, with respect to the stacking of these layers along the c
direction. A detailed comparison of these structures on the molecular and packing level will be published in a forthcoming paper. ${ }^{7 \mathrm{~b}}$ A lthough the crystal was sealed in a glass capillary, the intensities of three regularly measured check reflections indicated considerable anisotropic crystal decay (ca. 50%) which was taken into account by scaling the intensity data to the closest standard. Owing to this crystal instability the empirical absorption correction had to be performed by the DIFABS program ${ }^{34}$ (minimum correction 0.822, maximum 1.165) after completion of the isotropic structure model. The structure was solved by direct methods ${ }^{35}$ and refined on structure factors with the local version of the SDP program suite ${ }^{36}$ In the full-matrix least-squares refinement (based on F), all non-hydrogen atoms were assigned anisotropic displacement factors and hydrogen atoms were included riding on the corresponding carbon atoms $\left[\mathrm{C}-\mathrm{H} 0.98 \AA, \mathrm{U}_{\text {iso }}(\mathrm{H})=1.3 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})\right]$. The highest fluctuations in a final Fourier-difference map amounted to $0.25 \mathrm{e}^{-3}$.

A tomic coordinates, thermal parameters, bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. Chem. Soc., D alton Trans., 1997, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/527.

Acknowledgements

This work was supported by the D eutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank Professor Dr. G. E. Herberich for his continuing interest.

R eferences

1 D. W. M eek, P. E. N icpon and V. I. M eek, J. A m. Chem. Soc., 1970, 92, 5351; J. E. Huheey and S. O. Grim, Inorg. Nucl. Chem. Lett., 1974, 10, 973; G. J. Palenik, W. L. Steffen, M. M athew, M. Li and D. W. M eek, I norg. N ucl. C hem. Lett., 1974, 10, 125; G. R . Clark and G. J. Palenik, Inorg. C hem., 1970, 9, 2754; J. L. Burmester, C oord. Chem. Rev., 1968, 3, 225; 1966, 1, 205; J. L. Burmester and F. Basolo, Inorg. Chem., 1964, 3, 1587; A. Wojcicki and M . F. Farona, Inorg. C hem., 1964, 3, 151; F. Basolo, J. L. Burmester and A. J. Poe, J. Am. Chem. Soc., 1963, 85, 1700.
2 (a) J. L. Burmester, E. A. D eardorff, A. Jensen and V. H. Christiansen, Inorg. Chem., 1970, 9, 58; (b) I. Jibril, S. T. A bu-Orabi, S. A. K Iaib, L. Zsolnai and G. H uttner, J. O rganomet. Chem., 1994, 467, 189; (c) A. Chiesi-Villa, A . G. M anfredotti and C. Guastini, A cta Crystallogr., Sect. B, 1976, 32, 909; (d) R. S. P. Coutts and P. C. Wailes, A ust. J. Chem., 1966, 19, 2069.

3 (a) H. Werner, C oord. Chem. Rev., 1982, 43, 165; (b) R. Flügel, O. Gevert and H. Werner, Chem. Ber., 1996, 129, 405; (c) A. Antinolo, S. Garcia-L ledo, J. M. de Iiarduya and A. Otero, J. Organomet. Chem., 1987, 335, 85.

4 (a) V. C. Gibson, C. Redshaw, W. Clegg and M. R. J. Elsegood, J. Chem. Soc., Chem. Commun., 1994, 2635; (b) H. Brunner, M . M . K ubicki, J.-C. Leblanc, C. M oise, F. Volpato and J. Wachter, J. Chem. Soc., Chem. Commun., 1993, 851; (c) H. Werner and B. Strecker, J. O rganomet. Chem., 1991, 413, 379.

5 (a) P. Jutzi, D. Eikenberg, A. M öhrke, B. N eumann and H.-G. Stammler, Organometallics, 1996, 15, 753; (b) H. Suzuki, N. Tokitoh, S. Nagase and R. Okazaki, J. Am. Chem. Soc., 1994, 116, 11 578; (c) G. Erker, M. M ena, C. K rüger and R . N oe, J. Organomet. Chem., 1991, 402, 67.

6 (a) R. Beckhaus, A ngew. Chem., 1997, 109, 694; A ngew. Chem., Int. Ed. Engl., 1997, 36, 686; (b) R . Beckhaus, J. Oster, J. Sang, I. Strauß and M. Wagner, Synlett, 1997, 241; (c) R. Beckhaus, S. Flatau, S. I. Troyanov and P. H ofmann, Chem. Ber., 1992, 125, 291; (d) R. Beckhaus, in Organic Synthesis via Organometallics (OSM 4), Proceedings of the Fourth Symposium in A achen, 15-18 J uly 1992, eds. D. Enders, H.-J. Gais and W. Keim, Vieweg, Braunschweig, 1993, pp. 131-149.

7 (a) R. Beckhaus, I. Strauß, T. Wagner and P. K iprof, A ngew. Chem., 1993, 105, 281; Angew. Chem., Int. Ed. Engl., 1993, 32, 264; (b) T. Wagner, U. Englert, I. Strauß, J. Sang and R. Beckhaus, unpublished work.
8 R. Beckhaus, J. Oster and T. Wagner, Chem. Ber., 1994, 127, 1003.
9 R. Beckhaus, I. Strauß and T. Wagner, A ngew. Chem., 1995, 107, 738; A mgew. C hem., Int. E d. E ngl., 1995, 34, 688.
10 (a) R . Beckhaus, J. Sang, T. Wagner and B. G anter, O rganometallics, 1996, 15, 1176; (b) R. Beckhaus, J. Sang, U. Englert and U. Böhme, Organometallics, 1996, 15, 4731.
11 R. Beckhaus and M. Wagner, unpublished work.
12 C. K. Johnson, ORTEP, Report OR N L-5138, Oak Ridge N ational L aboratory, Oak Ridge, TN, 1976.
13 (a) P. H. Bird, J. M . M cC all, A. Shaver and U. Siriwardane, A ngew. Chem., 1982, 94, 375; A ngew. C hem., Int. Ed. E ngl., 1982, 21, 384; (b) D. M. Giolando, T. B. Rauchfuss and G. M. Clark, Inorg. Chem., 1987, 26, 3080; (c) F. E. H ahn and W. W. Seidel, A ngew. Chem., 1995, 107, 2938; A ngew. Chem., Int. Ed. Engl., 1995, 34, 2700; (d) E. F. Epstein and I. Bernal, C hem. C ommun., 1970, 410.

14 F. Bottomley, D. Drummond, G. O. Egharevba and P. S. White, Organometallics, 1986, 5, 1620.
15 H . Lettau, Chemie der Heterocyclen, Deutscher Verlag der G rundstoffindustrie, Leipzig, 1980.
16 A. Ohno, K. N akamura, Y. Shizume and S. Oka, Bull. Chem. Soc. J pn., 1977, 50, 1003; E. Schaumann and W. Walter, Chem. Ber., 1974, 107, 3562; P. Beak and J. W. Worley, J. A m. Chem. Soc., 1972, 94, 597.
17 I. H yla-K ryspin, S. N iu and R. Gleiter, Organometallics, 1995, 14, 964; A. K. R appe and W. A. G oddard III, J. A m. Chem. Soc., 1982, 104, 297; T. H. U pton and A . K. R appe, J. A m. Chem. Soc., 1985, 107, 1206; A . K . R appe, Organometallics, 1987, 6, 354.
18 (a) R. O. H arris, J. Powell, A. Walker and P. V. Y aneff, J. Organomet. Chem., 1977, 147, 217; (b) H. Werner, S. Lotz and B. Heiser, J. Organomet. Chem., 1981, 209, 197.

19 K. Seitz and U. Behrens, J. Organomet. C hem., 1985, 288, C47.
20 (a) J. W. Park, L. M. Henling, W. P. Schaefer and R. H. Grubbs, Organometallics, 1990, 9, 1650; (b) H. G. Alt, K .-H. Schwind and M. D. R ausch, J. Organomet. Chem., 1987, 321, C9.

21 F. E. H ahn and T. Lügger, J. Organomet. Chem., 1995, 501, 341.
22 M. Bochmann, L. M. Wilson, M . B. Hursthouse and R . L. Short, Organometallics, 1987, 6, 2556.
23 L. B. K ool, M. D. Rausch, H. G. Alt, H. E. Engelhardt and M . H erberhold, J. Organomet. C hem., 1986, 317, C 38.
24 L. D. D urfee and I. P. Rothwell, Chem. R ev., 1988, 88, 1059.
25 G. A. Luinstra and J. H. Teuben, Organometallics, 1992, 11, 1793.

26 (a) R. Beckhaus, in Synthetic M ethods of Inorganic and Organometallic Chemistry, ed. W. A. H errmann, Georg Thieme, Stuttgart, in the press; (b) R . Beckhaus, K .-H . Thiele and D. Ströhl, J. Organomet. Chem., 1989, 369, 43.

27 (a) A. H endriksson and M. Sundbom, Theoret. Chim. A cta, 1972, 27, 213; (b) M. M. Francl, W. J. Pietro, W. J. H ehre, J. S. Binkley, D. J. D eF rees and J. A . Pople, J. Chem. Phys., 1982, 77, 3654.

28 W. J. Pietro and W. J. H ehre, J. Comput. C hem., 1983, 4, 241.
29 (a) W. J. Stevens, H. K rauss and M. Basch, J. Chem. Phys., 1984, 81, 6026; (b) W. J. Stevens, M. K rauss, H. Basch and P. G. Jasien, C an. J. C hem., 1992, 70, 612.

30 (a) T. R. Cundari, Organometallics, 1993, 12, 4971; (b) T. R. Cundari, J. Am. Chem. Soc., 1994, 116, 340; (c) T. R. Cundari, J. A m. C hem. Soc., 1992, 114, 7879.

31 C. M øller and M. S. Plesset, Phys. R ev., 1934, 46, 618.
32 SPA RTAN 3.1, Wavefunction, Inc., Irvine, CA, 1993.
33 M. W. Schmidt, K . K. Baldrige, J. A. Boatz, J. H. J ensen, S. K oseki, M . S. G ordon, K . A . N guyen, T. L . Windus and S. T. Elbert, Q CPE Bull., 1990, 10, 52.
34 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.

35 G. M. Sheldrick, SHELXS 86, Program for Structure Solutions, U niversity of G öttingen, 1986.
36 SD P, Version 5.0, Enraf-N onius, D elft, 1989.

Received 4th M arch 1997; Paper 7/01499F

[^0]: \dagger Non-SI unit employed: $E_{h} \approx 4.36 \times 10^{-18} \mathrm{~J}$.

